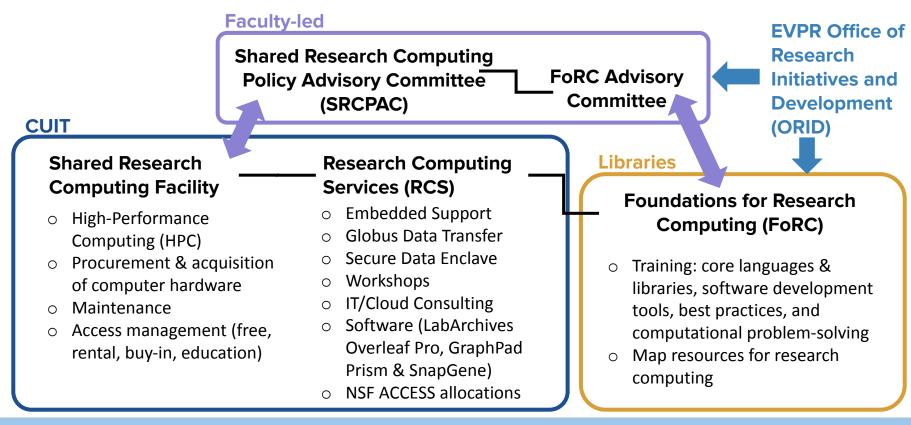
Shared Research Computing Policy Advisory Committee (SRCPAC)

Spring 2025 Meeting

Alexander Urban, Chair of SRCPAC

Agenda


- Welcome & Introductions
- Empire Al Alpha Phase
- High-Performance Computing Update
 - Alexander Urban, Chair of SRCPAC
 - Max Shortte, Manager CUIT High Performance Computing
- Research Computing Services Update
 - Axinia Radeva, Sr. Manager of CUIT Research Services
- Foundations for Research Computing Update
 - Marc Spiegelman, Chair of the FoRC Advisory Committee
 - Jonathan O. Cain CUL
 - Future of Training in Research Computing
- Other Business & Closing Remarks

Introductions

- Welcome & Introductions
- Empire Al Alpha Phase
- High-Performance Computing Update
 - Alexander Urban, Chair of SRCPAC
 - Max Shortte, Manager CUIT High Performance Computing
- Research Computing Services Update
 - Axinia Radeva, Sr. Manager of CUIT Research Services
- Foundations for Research Computing Update
 - Marc Spiegelman, Chair of the FoRC Advisory Committee
 - Jonathan O. Cain CUL
 - Future of Training in Research Computing
- Other Business & Closing Remarks

Shared Research Computing at Columbia

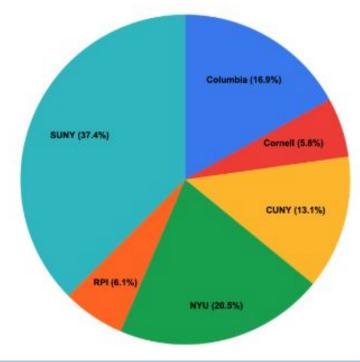
EVPR - Empire Al

Launched by Governor Kathy Hochul in April 2024 in partnership with New York's leading public and private institutions, Empire AI is a NYS initiative to advance artificial intelligence.

The Empire AI ALPHA system consists of 13 HGX Nodes, 8 H100 80GB GPUs per node and uses fair-share scheduling on a rotating priority access system to ensure equal allocation of time.

CUIT's High Performance Computing (HPC) and Research Computing Services (RCS) teams provide support.

Columbia University Empire Al Metrics:


Completed Job Count: 344

Completed Job Run Count: 4428:48:38

Allocated GPUs Used: 3,731

Number of Accounts: 43 Number of Projects: 14

Number of Pls: 12

High Performance Computing Updates

Alex Urban

Chair, Shared Research Computing Policy Advisory Committee (SRCPAC)

Halayn Hescock

Sr. Director, CUIT Research Services

Max Shortte

Manager, CUIT High Performance Computing

Current HPC Footprint

Terremoto Phase [1-2]

137 nodes:

- 111 Standard nodes (192 GB)
- 14 High Memory nodes (768 GB)
- 12 GPU nodes with NVIDIA V100 GPUs

Manitou - GPU Cluster

15 GPU nodes:

- 13 nodes with 1TB of memory 96 cores and 8
- A6000 GPUs with NVLink
- 2 nodes with 256G of memory 32 cores and 8 A6000 GPUs

Ginsburg Phases [1-3]

286 nodes:

Total of 9,152 cores (32 cores per node)

- 191 Standard Nodes (192 GB)
- 56 High Memory Nodes (768 GB)
- 18 GPU 2x RTX 8000 GPU modules
- 4 GPU 2x **V100S** GPU modules
- 9 GPU 2x A40 GPU modules
- 8 GPU 2x A100 GPU modules

Insomnia

60 nodes:

Total of 4,800 cores (80 cores per node)

- 31 Standard Nodes (192 GB)
- 15 High Memory Nodes (768 GB)
- 3 GPU 2 x **L40**
- 7 GPU 2 x **L40S**
- 1 GPU 4 x Intel
- 3 GPU 2 x **H100**

Current Considerations with HPC

- Storage
- Retirement Policy
- Bright Management

Consolidation Project

What?

Consolidate storage for all clusters into one device

Why?

- Move off of problematic DDN/Lustre storage
- Over \$375,000+ saved annually on Bright licenses.
- Allow continued usage of retired equipment
- Achieve 90-95% resource utilization efficiency across all HPC clusters.

How?

- Expand current Kalray storage on Insomnia
- Connect all clusters to new storage
- Keep Terremoto and Ginsburg queues separate

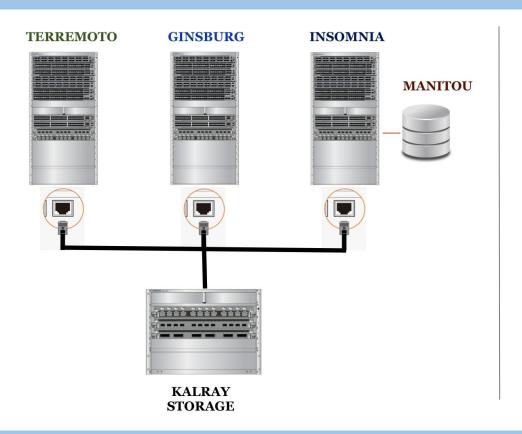
When?

Target completion by the end of Q2 2025 (exact date to be determined).

New HPC Hardware Retirement Policy

Compute nodes are purchased for a five-year life. We aim to keep the nodes available until one of the following conditions is met:

- **Hardware Failure:** Nodes will be disabled if they experience hardware failure. Since they are no longer under maintenance contracts or warranties, repair is not guaranteed.
- Space for New Hardware:
 - The oldest nodes will be decommissioned when space is needed to accommodate new hardware installations.
 - Affected users will be informed at least 6 months in advance.


Job Access & Fairshare on Warranty-Expired Clusters

- **5-Day Jobs** Researchers can run **5-day** jobs on older clusters if they have at least one working node.
- Free Partition Fallback If all nodes in a partition fail, research groups retain storage access and can submit 12-hour jobs via the free partition.
- **Fairshare Calculation** Fairshare is proportional to the number of nodes a research group owns.
- Operating Committee meeting will be set to discuss

Moving Away From Legacy Storage

- As part of ongoing efforts to optimize storage performance, the
 Terremoto and Ginsburg clusters will transition away from legacy
 storage to Kalray storage solutions.
- Manitou cluster will be integrated into Insomnia, reducing the number of clusters from four to three.
- Manitou details:
 - The Manitou integration will add 120 GPUs to Insomnia's GPU pool.

Moving Away From Legacy Storage

Performance Improvements:

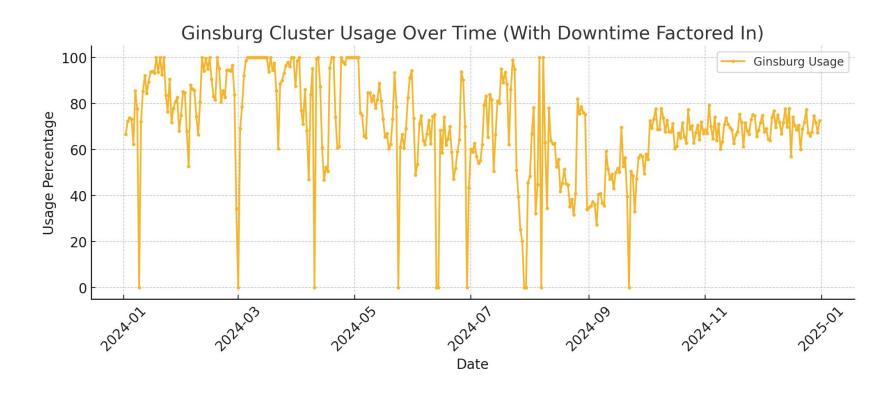
Metric	Difference
Read Speed (GB/s)	+32%
Write Speed <i>(GB/s)</i>	+23.5%
IOPS (K)	+21%
Latency (ms)	-13%

Manitou GPUs will become available to Insomnia

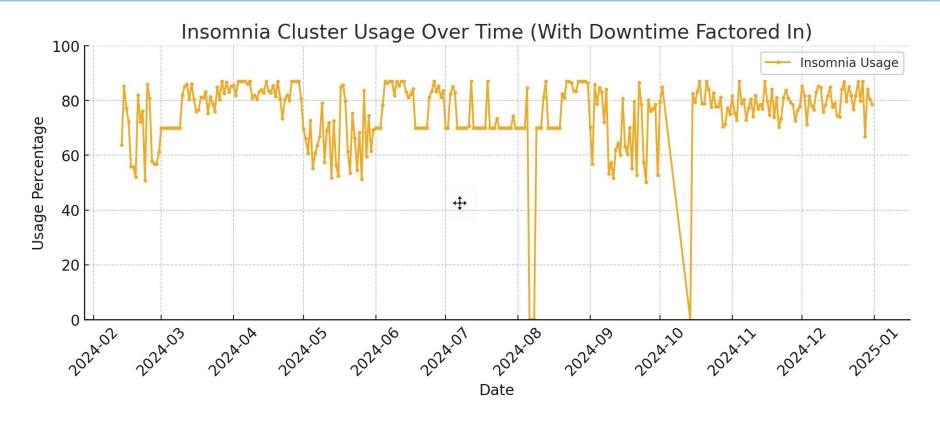
Overview of Combined Resources Post Manitou Integration

- Total Nodes: 75
- Total CPUs: 8,664 CPUs
- Total RAM: 44.2 TiB
- Total GPUs: 144 GPUs

SLURM FairShare, Queues, and Priorities


- SLURM fairshare will remain unchanged across all clusters.
- Each cluster will preserve:
 - Current fairshare allocation
 - Queues
 - Priorities
- Only the storage device is changing (DDN → Kalray).
- No impact on:
 - Job distribution
 - Scheduling
 - Prioritization

HPC Statistics


HPC Statistics | Calendar Year 2024

Ginsburg Statistics | 2024

Insomnia Statistics | 2024

Free/Edu Tier Updates

A new Free/Education tier has been established on Insomnia

Contributed by A&S, SEAS, and EVPR

 Each year, they will purchase a new node to add to the free tier

 Users have been migrated from the retired equipment to Insomnia

Free/Edu Tier Statistics | 2024

Total Accounts:

Partition	Accounts
Edu accounts	56
Free accounts	160
	216

Total Completed Jobs:

Partition	Completed Jobs	
Total Completed Jobs	887,669	

HPC Support Services

- Email
 - hpc-support@columbia.edu all HPC questions
- Group Information Sessions
 - HPC support staff meet with your group, upon request
- Training Workshops every semester (Online)
 - Introduction to Linux
 - Introduction to Bash/Scripting
 - Introduction to High Performance Computing
 - Introduction to Python in HPC Environments (coming soon)

Research Computing Services Updates

Axinia Radeva, Sr. Manager, Research Computing Services, CUIT

Research Computing Services

cuit.columbia.edu/rcs

Embedded Research Computing Support – Dedicated support for research computing across campuses.

Electronic Research LabArchives Notebooks – Organize, store, and share research data with backups & audit trails.

Globus Research Data Transfer – Secure, high-speed data transfers.

Cloud Research Consulting – Expert guidance on computing resources & onboarding.

ACCESS National HPC Resources – Try Columbia's Discover allocation & apply for national HPC resources.

GraphPad & SnapGene Discounts – Statistical analysis and molecular biology software at reduced rates.

—

Overleaf Professional – Collaborative LaTeX & Rich Text writing tool for scientific publishing.

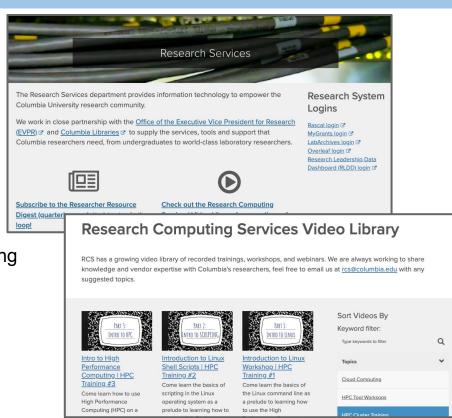
Improved SRCPAC website https://research.columbia.edu/content/srcpac

SRCPAC: Shared Research Computing Policy **Advisory Committee**

Lamont, and Manhattanville campuses. SRCPAC is also responsible for the governance of the Shared Research

Research Services: Evolving Website and Expanding Video Library

Find your CUIT research resources in one place:


https://www.cuit.columbia.edu/research

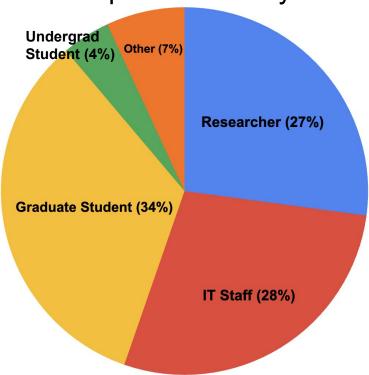
- Research system login links
- Highlights of newly-offered tools
- Research Services portfolio overview
- FAQ

A calendar of research events across Columbia & a growing repository of training recordings is available:

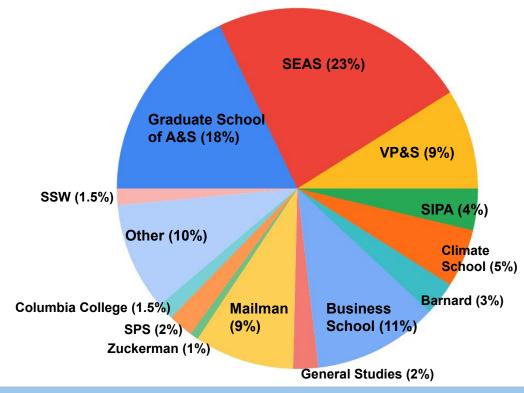
https://www.cuit.columbia.edu/rcs/training

- HPC cluster trainings
- Intel & NVIDIA HPC tool workshops
- Cloud computing overviews
- SnapGene webinars and more

Research Computing Trainings & Workshops (Since April 2024)

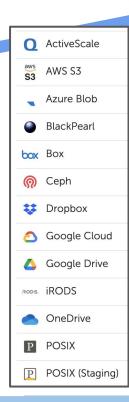

15 Workshops: 6 held in-person, with over 188 attendees (400+ registrations)*

- Trainings by RCS/HPC Staff (8 Sessions) Hands-on sessions focused on Columbia's research computing services:
 - Intro to HPC Series (Intro to Linux, scripting, and using on-prem HPC)
 - Secure Data Enclave
 - ACCESS HPC offerings from NSF
 - Globus data transfer
 - Columbia Data Platform for storage & analysis
 - Researcher Resources at Columbia overview
 - Using Jupyter Notebooks on HPC
- Vendor-Led Workshops (7 Sessions) Covering the latest capabilities (e.g., AI, GPUs) of industry tools and platforms:
 - Google Cloud Platform
 - Intel
 - NVIDIA (3 sessions)
 - SnapGene Molecular Biology Software (2 sessions)



Research Computing Trainings & Workshops Metrics

Globus High Speed Data Transfer Service



Globus Standard launched with Google Drive Connector:

Non-sensitive data transfer between personal/lab computers/servers and HPC clusters

2023

Globus Open Access added: Globus connectors enable seamless integration with various storage systems

2024

Globus BAA signed and High Assurance subscription established: Enables sensitive data (PHI, PII, RHI) to be transferred.

CUIT and CUIMC now provide

Globus High Assurance for all Columbia users.

NEW: Globus as a service

ACCESS Roadmap at Columbia

Advancing Innovation

January 2017

Test Allocation

was launched

Columbia's

on XSEDE

Extreme Science and Engineering Discovery Environment

September 2022

ACCESS succeeded XSEDE

Our existing
Allocation was
renamed to the
Columbia Discover
Allocation

September 2023

ACCESS approved a 750,000 supplement to our Discover Allocation

Total of 1,500,000 ACCESS credits on the Columbia Discover Allocation

March 2024

RCS launched the National High-Performance Computing – ACCESS service page

August 2024

Columbia Discover Allocation was renewed for August 2025

Launched the National High-Performance Computing ACCESS Request Service Intake Form

ACCESS Metrics

2023

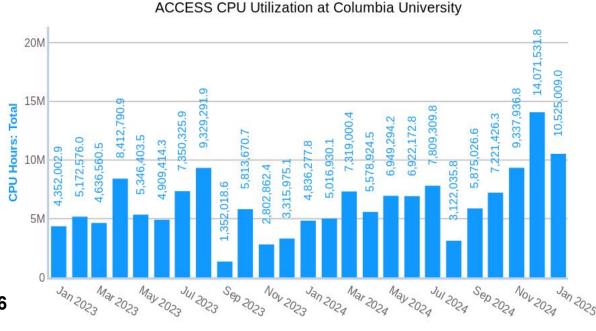
32 Allocations

Active Users: 54

Active Pls: 28

o CPU Hours: 62,793,892.7

Jobs Executed: 94,163


2024

241% ☆ ○ 109 Allocations

61% 1 ○ Active Users: **87**

3.5% ☆ ○ Active Pls: **29**

258% ¹ ○ Jobs Executed: **337,305**

Added two new resources to our Columbia Discover Allocation: NCSA DeltaAl and NCAR Derecho-GPU

Research Computing Services

Research Computing Services (RCS) is available to discuss your research technology needs:

Email: rcs@columbia.edu

RCS: <u>cuit.columbia.edu/rcs</u>

Research Services: <u>cuit.columbia.edu/research</u>

Foundations for Research Computing Update

Marc Spiegelman, Foundations Advisory Committee
Jonathan Cain, Columbia Libraries
Daniel Woulfin, Columbia Libraries

Outline

- Purpose and Design of foundations.
- Current state and issues
- Goals and demand have not changed…but computation has
- Maybe it's time to re-evaluate

Foundations Mission

Foundations for Research Computing provides an **informal introduction** for Columbia University graduate students and postdoctoral scholars to the fundamental skills for harnessing computation: core languages and libraries, software development tools, best practices, and computational problem-solving.

Purpose:

- To provide the investment in people and computational skills required to complement our investment in hardware, software and systems administration
- Provide a structured pathway for onboarding students and researchers into modern research computing at Columbia.

Initial Design of Foundations

Novice Level

- Institutional Partnership with Software Carpentry
- Software Carpentry Workshops

Intermediate Level

- CUIT/RCS HPC Training
- Topical workshops and intensives (tensorflow, nlp, etc)
- Python User Group/Python Club
- Integration with Departmental Training (e.g. MechE)
- Other modes (Distinguished Lecture series, CIG)

Advanced level

Coordination with departmental curriculum

Current Research Computing Training Landscape

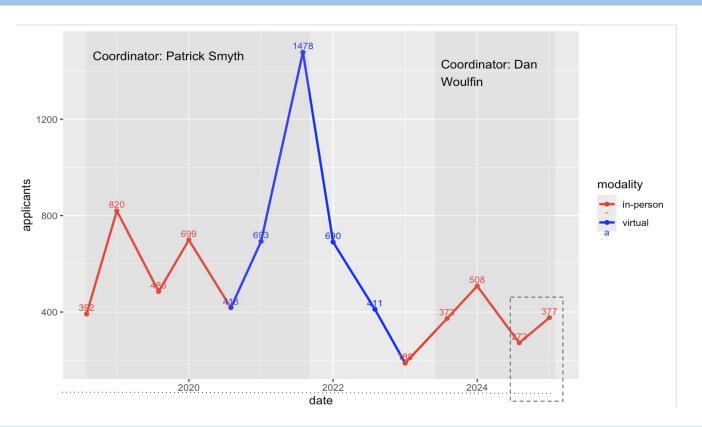
Foundations for Research Computing

2x/year Foundational Workshops

Training: core languages & libraries, software development tools, best practices, and computational problem-solving

CUIT

Sample of trainings related to RCS/HPC Services


- Intro to HPC Series (Intro to Linux, scripting, and using on-prem HPC
- Secure Data Enclave
- ACCESS HPC offerings from NSF
- Globus data transfer
- Columbia Data Platform for storage & analysis
- Researcher Resources at Columbia overview
- Using Jupyter Notebooks on HPC
- Vendor-led training

Libraries

Computational Research Instruction

- Open workshops on computational and algorithmic literacy
- Introductions to programming
- Classroom instruction
- Requested/Invited workshops
- Individual consultations

Carpentries Workshop Applicants over Time

Appropriate Demand (FY 2025)

Category	Applicants	Appropriate for the curriculum - first pass	Accepted	RSVP'd	
Postdocs	84	38 (45%)	30 (79%)	23 (77%)	
PhDs	119	47 (39%)	34 (72%)	23 (68%)	
ARS	37	21 (57%)	10 (48%)	9 (90%)	
Masters	394	222 (56%)	72 (32%)	56 (78%)	
Total	649	336 (52%)	166 (46%)	113 (68%)	Day 1 count - 100 (88%)

Some Issues for consideration

- Carpentries Model for Beginner training doesn't scale, and is difficult to sustain
- Hierarchical structure of Foundations has reverted
- Loss of faculty guidance/coordination
- Audience and relationship to SRCPAC is less clear
- Curriculum and methods have not changed much (while the world of computation has)

Nevertheless:

- Foundations != Carpentries
- Clear demand for informal training remains strong across the university
- We need to rethink how the University meets this demand

Discussion on a Changing Framework

Addressing unmet needs by developing a more sustainable, expanded Foundations program that is data-informed, user-centered, and more modular.

Some current directions include:

- Re-engaging the Foundations Faculty Advisory Group
- Revising the Foundations Introductory curriculum and Models
 - Developing and curating resources for self-paced asynchronous learning
 - Exploration of Al Tutors (e.g. "Course Assistant", LLM's)
 - Explore peer to peer mentoring among researchers/graduate students
- Research Computing Services (CUIT) continues to provide training for support of research computing resources
- Centering computational literacy as a structuring focus in the Library

Current Research Computing Training Landscape

Foundations for Research Computing

2x/year Foundational Workshops

Becomes a website showing repository of training

CUIT

Sample of trainings related to RCS/HPC Services

- Intro to HPC Series (Intro to Linux, scripting, and using on-prem HPC
- Secure Data Enclave
- ACCESS HPC offerings from NSF
- Globus data transfer
- Columbia Data Platform for storage & analysis
- Researcher Resources at Columbia overview
- Using Jupyter Notebooks on HPC
- Vendor-led training

Libraries

Computational Research Instruction

- Open workshops on computational and algorithmic literacy
- Introductions to programming
- Classroom instruction
- Requested/Invited workshops
- Individual consultations

Research Computing Training Landscape going Forward

Foundations for Research Computing

Provide a coordinated resource for foundational computational training for the University

CUIT/RCS

Direct support for SRCPAC HPC Services

- Intro to HPC Series (Intro to Linux, scripting, and using on-prem HPC
- Containerization
- Secure Data Enclave
- ACCESS HPC offerings from NSF
- Globus data transfer
- Columbia Data Platform for storage & analysis
- Researcher Resources at Columbia overview
- Using Jupyter Notebooks on HPC
- Vendor-led training

Libraries

Computational Research Instruction

- Basic beginner training for all
- Better integration of AI in curriculum/Training
- Better coordination with Faculty/ Formal Curriculum
- Curated Self-learning materials
- More focus on learning to learn

Get involved

Nominate yourself or a colleague as SRCPAC Co-Chair

or

Offer to chair or join a temporary *ad-hoc* subcommittee on entry-level training.

Your ideas

Time for your questions and suggestions

